
E ~ P E R I ~ E N T A L  INVESTIGATION 0 F 

IN SE~ICONDUCTO RS 
ELECTRON-PHONON INTERACTIONS 

FINAL F3GPORT 

(December 16, 1966 - January 30, 1968) 

by 

Dr. Joseph P. Martin, Principal Investigator 

Research Institute for Advanced Studies 
(RUS) 

Martin Marietta Corporation 
1450 South Rolling Road 

Baltimore, Maryland 21227 

January 1968 

ff 653 July65 Contract NO. NAS8-21046i 
Control No. DCN 1-7128-0001-8-01 (1F) 

J 

(ACCESSION NUMBER) 

(CATEGORY) 



EXPERIME.NTAL INVESTIGATION OF ELECTRON-PHONON 

INTERACTIONS LN SEMICONDUCTORS 

FINAL Rl3PORT 

(December 16, 1966 - January 30, 1968) 

by 

Dr. Joseph P. Martin, Pr incipal  Invest igator  

Research I n s t i t u t e  f o r  Advanced Studies 

Martin Marietta Corporation 
1450 South Rolling Road 

Baltimore, Maryland 21227 

(ELAS) 

January 1968 

Contract No. NAB-21046 

Control No. DCN 1-7-28-000B-01 (1F) 



Acknowledgments 

This report  w a s  prepared by the  RIAS Division, Martin Marietta 

Corporation under contract  NAS8-21046, "Experimental Invest igat ion of 

Electron-Phonon Interact ions i n  Semiconductors" f o r  t h e  George C. Marshall 

Space Flight Center of the  National Aeronautics and Space Administration. 

The work w a s  administered under t h e  technical  d i r ec t ion  of t h e  Research 

Projects Laboratory, George C. Marshall Space Flight Center with 

M r .  W i l l i a m  J. Robinson act ing as project  manager. 

The author acknowledges with s incere  thanks the  extensive help 

from D r .  James B. Mead i n  both the  experimental work and t h e  theo re t i ca l  

discussion and in te rpre ta t ion  of these s tudies .  The technical  assis- 

tance of Guy H. Parr throughout t he  program w a s  absolutely essent ia l .  

The electron-diffract ion r e s u l t s  were obtained with the  help of 

John D. Venables and Michael Meyerhoff. Dr. Louis Witten provided 

continuing i n t e r e s t  and insights .  Dr. Donald Denburg provided helpful  

discussions and ideas on experimental techniques. 



Tab l e  of Cont e n .  s -- 

I. Introduction 

11. Sample Preparation 

111. CdS Transducer Preparation 

1. 

2. Ion bombardment cleaning 

3. Evaporation procedure 

4. Evaluation of CdS f i l m  

Quartz c rys t a l  microbalance and substrate  holder 

a. examination of interference f r inges  

b. e lec t ron  beam d i f f r ac t ion  s tudies  of film orientat ion 

e .  acoustic tests of CdS transducers 

I V .  Theory of Electron-Phonon Interact ions 

V. Phonon Propagation i n  InSb 

1. InSb - C1 
2. InSb - D3b, -D3e, - C2b 

3 .  InSb - E 7 i  0.825 ern long 

V I .  Hot Electron Effects  

V I I .  Summary and Conclusions 

2 

5 

9 

10 

15 

17 

18 

18 

21  

25 

28 

35 

35 

41 

45 

46 

52 



Ab s t ract 

Techniques f o r  aligning, polishing and cu t t ing  semiconductor 

c rys t a l  rods f o r  use i n  acoustic propagation s tudies  of electron-phonon 

in te rac t ion  were evolved. A CdS vapor-deposition system w a s  set up 

f o r  production of t h i n  f i lm transducers. 

included a quartz c rys t a l  microbalance f o r  measurement of f i lm growth 

rate as w e l l  as an ind i rec t  ion-bombardment cleaning system. Reflection 

electron d i f f r ac t ion  w a s  used t o  determine t h a t  highly polished substrate  

surfaces were found t o  be necessary f o r  oriented fi lm growth. The t rans-  

duction eff ic iency of t he  fi lms grown t o  date i s  about 10 l b  l e s s  than 

that  obtained w i t h  x-cut quartz transducers. Electron heating e f f e c t s  

on mobility were measured t o  evaluate t he i r  e f f ec t  on theo re t i ca l  pre- 

d ic t ions  of acoustic gain.  The e lec t ron  heating data w a s  used t o  

obtain measures of energy re laxa t ion  t i m e  of t h e  electrons.  This 

The development of t he  system 

relaxat ion t i m e  w a s  found t o  be strongly dependent on e lec t ron  temper- 

a ture  (4 x l0'7sec at  4.2'K t o  8 x 10-l' sec at 28') and independent of 

l a t t i c e  temperature. Analysis of measurements of temperature dependence 

of acoustic a t tenuat ion yielded values of absolute a t tenuat ion of 

12 db/cm at 4.2OK and of acoustoelectr ic  coupling coef f ic ien t  of 

8 = 3 . 3  x 10 -4 . Preliminary measurements of a t tenuat ion as a function 

of applied e l e c t r i c  f i e l d  i n  InSb indicated a de f in i t e  decrease i n  

a t tenuat ion with increasing f i e l d .  
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I o INTRODUCTION 

Measurement of t he  cha rac t e r i s t i c s  of propagation of mechanical 

waves through so l ids  has served a s  a n  extremely useful  technique i n  

invest igat ing the  physical properties of matter i n  the  so l id  state. I n  

par t icu lar ,  t he  in te rac t ion  of acoustic waves (or phonons when quantum 

mechanical e f f ec t s  become important) with conduction electrons has been 

a very ins t ruc t ive  deviceo A grea t  deal  of t heo re t i ca l  work has 

been done on the  at tenuat ion and amplification of ul t rasonic  waves and 

the r e l a t ed  acousto-electric e f f ec t  v i a  t h e  electron-phonon interact ion,  

but r e l a t ive ly  l i t t l e  experimental ve r i f i ca t ion  of t h i s  work has been 

achieved. A considerable amount of work at lower ul t rasonic  frequencies 

has been done with CdS, t he  material  i n  which ul t rasonic  amplification 

was first demonstrated Some work on GaAs demonstrated a moderate 

gain from 30 MEIz t o  90 MHz v i a  t h e  piezoelectr ic  interact ion.  

fication’ of 9 GHz phonons i n  germanium was achieved through t h e  defor- 

mation poten t ia l  in te rac t ion  where t h e  multivalley nature of G e  prevented 

the  space charge bunching which otherwise reduces the  gain obtainable 

v i a  deformation poten t ia l  couplingo 

1- 6 

7 8 

Ampli- 

It i s  t h e  purpose of t he  present program t o  come to a b e t t e r  

understanding of t he  in te rac t ions  between electrons and phonons i n  semi- 

conductors since t h i s  in te rac t ion  is  a t  t h e  hear t  of t h e  whole theory 

of the  t ransport  propert ies  of solids.  This in te rac t ion  i s  studied 

experimentally by measuring the  at tenuat ion and gain of a coherent 

acoustic wave propagating through semiconductor c rys t a l so  The work 
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here has concentrated on InSb and represents further development of t he  

s tudies  reported i n  a previous technical  report”. 

i n  these experiments f o r  studying t h i s  in te rac t ion  involves conversion 

of microwave energy i n t o  a coherent phonon wave and then reconverting 

these phonons back i n t o  a microwave s igna l  for detect ion and measurement., 

The in te rac t ion  between phonons and conduction electrons can be affected 

by the  electron dr i f t  ve loc i ty  such t h a t  the phonon wave can be amplified 

or attenuated by t h e  electrons i n  an amount depending on t h e i r  velocity.  

The method used 

This charac te r i s t ic  suggests t h a t  techniques r e l a t ed  t o  those used i n  

these experiments could f i n d  appl icat ions i n  microwave technology such 

as amplifiers, delay l i n e s  and modulators. 

I n  the previous work’’ the piezoelectr ic  method of generating 

acoustic waves was chosen over the magnetostrictive method. Some measure- 

ments were made t o  determine the charac te r i s t ics  of quartz and tourmaline 

c rys ta l s  a s  transducers a t  903 GHz. The transduction eff ic iency and 

t h e  temperature dependence of phonon at tenuat ion were measured f o r  a 

number of such crystals. 

c r y s t a l  t o  another i n  transduction efficiency. 

dependence of phonon at tenuat ion was very consistent from one crystal 

t o  another although the  quartz and tourmaline r e s u l t s  d i f f e red  markedly 

from each other- 

r e s u l t s  of other invest igators  whose data covered portions of t he  mnamic 

range of t h i s  experiment 11’12. 

A la rge  v a r i a b i l i t y  was observed from one 

However, the temperature 

The quartz data were i n  good agreement with t h e  

None of t h e  ex is t ing  theor ies  of phonon- 

phonon sca t te r ing  appeared completely adequate t o  describe t h e  data, 

but t h a t  of Maris13 appeared t o  give the  basic  behavior which w e  observed 
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i n  both quartz and tourmaline,viz: an increase i n  slope of t h e  tempera- 

t u re  dependence of' a t tenuat ion with decrease i n  temperatureo 

Quartz c rys t a l s  were used as transducers t o  generate micro- 

wave phonons i n  high puri ty ,  n-type InSb semiconductor c rys t a l s  i n  the  

previous work. 

c rys ta l s  cut from two boat-grown InSb ingots. These c rys t a l s  both had 

a very high dis locat ion density, cha rac t e r i s t i c  of boat grown 

crystals .  

Repeated attempts a t  detecting phonons f a i l e d  with 

A c rys t a l  cut from a t h i r d  ingot which had been Czochralski 

grown with very low dis locat ion density was successful i n  propagating 

the  9.3 GHz phonons which were eas i ly  detectable i n  our system. 

decrease i n  a t tenuat ion with increase i n  temperature between 4.2OK and 

l5'K was observed wi th  t h i s  c rys ta lo  

from phonon sca t te r ing  by electrons was very la rge  (up 

and was reproducible qua l i ta t ive ly  but not quant i ta t ively.  This is  

due t o  t h e  complicated interference e f f ec t s  observed i n  the echo 

pat terns  and a l s o  due t o  t he  non-reproducibility of these interference 

pat terns  from one thermal cycle t o  another. 

A 

Such a decrease which is  expected 

t o  14 db change) 

Another e f f ec t  which was observed with t h i s  c r y s t a l  was a 

frequency s h i f t  i n  t he  phonons which had t raversed the  In%. This was 

detected by noting t h a t  i n  t h e  super-heterodyne receiver  system, a 

s l igh t ly  higher (about 1-2 MHz) l o c a l  o s c i l l a t o r  frequency was required 

t o  maximize t h e  s ignals  corresponding t o  acoust ic  paths through t h e  

TnSb as compared t o  those through t h e  quartz transducer alone. The 

e f fec t  was qui te  pronounced and eas i ly  detectable. 

The In% c r y s t a l  which gave t h e  r e s u l t s  discussed above was too  

short  t o  effect ively a t t ach  current leads f o r  t e s t i n g  of t he  gain in te r -  
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action. 

obtain acoustic propagation i n  In% c rys t a l s  which were long enough to 

Therefore the  pr inc ipa l  thrust of the  present work was to 

a t tach  current leadso 

110 SAMPLF: PREPARATION 

The methods used for preparation of In% c rys t a l s  f o r  acoust ic  

propagation measurements a re  similar i n  some respects  to those reported 

i n  the  previous work’’, but a number of improvements i n  t h e  technique 

were incorporated i n  the  method. Two ingots were used i n  the  process 

of t h i s  work and w i l l  be re fer red  to as  ingots B * E J  and . The ingots 

were both n-type Czochalski grown with low dis locat ion density and 

with c a r r i e r  concentration quoted a t  N - 10 cm 14 -3 

The method f i n a l l y  evolved f o r  sample preparation and used 

with ingot E began with x-ray alignment of t h e  ingot on a Laue d i f f r ac t ion  

camera to determine the  direct ion of a (111) ax i s  to + 2’. The ingot - 
was then lapped to produce two opposite faces  normal to t h i s  axis. One 

face was then checked with a precision x-ray spectrogoniometer described 

previously” and lapping was repeated and a l te rna ted  with spectrogoniometer 

checks u n t i l  the  surface was normal to t he  (111) ax i s  to within 4 minutes 

of arc. Then t h i s  surface was polished with a high grade op t i ca l  f i n i s h  3’ , 
f l a t  to 

face was then lapped and polished t o  t h e  same f l a t n e s s  and f i n i s h  and 

500 1 over the  2.5 em diameter of t he  ingot. The opposite 

a l s o  p a r a l l e l  to t h e  first face to within 6 seconds of arc .  

L__-----_I__ 

* 
Obtained from Cominco Products, Inc., Spokane, Washington 99201 
Obtained from Nuclear Elements Gorp., Butler, Pennsylvania 16001 . 

;z’ Polishing done by Muffoletto Optical  Company, Baltimore, Maryland 21206 
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The ingot was then careful ly  cleaned i n  preparation f o r  evapora- 

t i o n  of cadmium sul f ide  transducer f i l m s .  

concentrated HCR, followed by d i s t i l l e d  water, acetone, methanol and 

f i n a l l y  Freon precision cleaning agent. The f i n a l  s t e p  i n  t he  cleaning 

process consisted of ion bombardment i n  t h e  vacuum chamber p r io r  t o  

CdS evaporationo Thin f i lms of cadmium sul f ide  were then deposited on 

both faces  and measured f o r  thickness. The ion bombardment cleaning 

and CdS film deposition w i l l  be described more f u l l y  i n  Section IV. 

F ina l ly  the  ingot was mounted between two g lass  p la tes  with 

red  seal ing wax completely covering both faces  f o r  cu t t ing  of rods. 

Then rods of 00125f' and 0.250" diameter were cut from the  ingot 

This consisted of washing i n  

* 

p a r a l l e l  t o  t h e  surface normal with an ul t rasonic  impact grinde rf . 
The rods were then ready f o r  inser t ion  i n  t he  microwave cavi ty  f o r  

acoustic tes t ing .  

Some of the  InSb rods were glued t o  quartz c rys t a l s  t o  use t h i s  

method of piezoelectr ic  exci ta t ion ra ther  than the  CdS film. The 

method used f o r  gluing the  c rys t a l s  s t a r t e d  with t h e  same careful  

cleaning procedure described above f o r  t h e  CdS film evaporation except 

t h a t  no ion-bombardment cleaning was used. 

were then placed together and the  in te r face  examined i n  monochromatic 

l i g h t  f o r  interference fringes.  A f t e r  several recleanings it was 

possible t o  get t h e  surfaces f r e e  of d i r t  such t h a t  t h e  two surfaces 

The quartz and InSb rods 

would have l e s s  than one interference fr inge.  The two rods were care- 

* 
E.I. Dupont de Nemours Inc.-Freon Products Div., Eas t  Orange, N.Jo 07017 4 Raytheon Model 2-334-20, CA&S Division, Waltham, Massachusetts 
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* 
f u l l y  placed between t h e  jaws of an indicat ing micrometer with d i a l  

readings of inches (2.54 microns). It was possible t o  estimate 

readings t o  .25 microns. After recording t h e  d i a l  reading the rods 

were removed, a spot of epoxy r e s i n  # placed on the interface,  and 

replaced i n  the  micrometer. 

u n t i l  t he  reading returned to i t s  previous value indicat ing t h a t  t h e  

The micrometer was then tapped l i g h t l y  

f i lm was l e s s  than ,25 microns th ick  and probably reasonably parallel. 

It was necessary to a t t ach  leads to the  c rys t a l s  f o r  applying 

the  e l e c t r i c  f i e l d s  used i n  obtaining t h e  necessary electron d r i f t  

ve loc i t ies .  The e l e c t r i c a l  contacts could not be made on the  end 

faces of t he  rods since these had t o  be preserved f o r  acoust ic  trans- 

mission and r e f l ec t ion -  The leads were therefore  attached around t h e  

ends of t he  rodo 

ul t rasonic  soldering too l ,  it was found t h a t  they could be attached 

A f t e r  f i r s t  a t taching t h e  leads wi th  solder using an 

* 
more accurately with s i l v e r  paint.  The conductivity measurements described 

in Section V I  showed t h e  same r e s u l t s  as with soldered contacts. The 

e l e c t r i c a l  contacts were constructed from O.Ol5" diameter phosphor bronze wire 

coiled i n t o  a c i r cu la r  loop over a form with a diameter smaller than 

the c rys t a l  rodo 

onto the  InSb rod as seen i n  Fig. 1- Voltage probe contacts made of 

Then t h i s  coi led loop was opened enough t o  be sprung 

O.OO5" diameter copper wire and attached with s i l v e r  paint  were s p c e d  

0.13 cm apart near t h e  center of t h e  rod t o  measure t h e  r e s i s t i v i t y  of 

t h e  sample, To prevent these contacts from breaking loose, they were 

* Etalon Dia l  Micrometer #25, Alina Corp., Plainview, L.I., New York 11803 
# Eccobond 45 LV with Catalyst  15 LV - ESnerson & Cwnmings, Inc. 

Gardena, California 
Conductive S i lver  #481, E.1. duPont de Nemours & Coo, Electrochemicals 
Dept., Wilmington, Delaware 
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Figure 1 - Photograph showing the InSb rod E-7i glued t o  
quartz transducer QV6 with e l e c t r i c a l  contacts 
attached with s i l v e r  conducting paint.  



- 9  - 

covered w i t h  a foaming ego& which holds them firmly but without 

exerting undue thermal strain.  

111. CdS TRANSDUCER PREPARATION 

I n  previous work at t h i s  l ab  ratory,  x-cut q iartz rods glued 

t o  the  semiconductors served as transducerslO. 

ra ther  severe acoustic interference e f f ec t s  a r i s ing  from s l i g h t  deviations 

from parallelism and f l a tnes s  of t he  bonded faces. 

a n d  f l a tnes s  of a c r y s t a l  can be maintained within to le rab le  limits 

This method l e d  to 

Although the  paral le l ism 

(about 1% of the acoustic wavelength of - 5000 8) during polishing, 

it is very d i f f i c u l t  t o  maintain these limits between two 

bonded faces  of dissimilar materials when the  temperature i s  varied over 

a wide range. 

techniques were adapted f o r  producing t h i n  f i lm  transducers t o  replace 

the  quartz crystals .  The method developed14 by deKlerk f o r  producing 

t h i n  f i l m  piezoelectr ic  transducers of very high r e s i s t i v i t y  involves 

essent ia l ly  evaporating cadmium and suLfur separately from two 

independently controlled crucibles onto a substrate  which i s  not 

viewed d i r ec t ly  by the  crucibles. 

To circumvent t h i s  problem, a system was constructed and 

-E 
An evaporation system with a 6" a l l  s t a in l e s s  s t e e l  pumping 

system and 18" x 30" pyrex b e l l  jar was i n s t a l l e d  and modified f o r  t he  

t h i n  film growth. A schematic diagram of the system i s  shown i n  

A Eccofoam, Emerson & Cummings, Inc., Gardena, California 
* HVEC Model 618 from High Vacuum Equipment Corp., Hingham, Mass. 
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* 
Figure 2. Each crucible 

t r a l  inverted tube f o r  the  heater  filament. 

was constructed of fused quartz with a cen- 

The l iqu id  nitrogen 

chevron t r a p  a t  the pumping port  served t o  prevent the  sulfur and 

cadmium vapor from ge t t ing  i n t o  the  pumping system. 

lL- Quartz Crystal Microbalance and SxIxitrate Holder .I I n  order 

to measure dynamically the  r a t e  of f i lm  growth and to monitor the  f i n a l  

f i lm thickness, a microbalance was b u i l t  which records the f i l m t h i c k -  

ness on a resonant quartz c rys t a l  by recording its change of resonant 

frequency. The quartz c rys t a l  microbalance and substrate  holder, 

shown i n  Fig. 3, consis ts  of 1) a heater t o  r a i s e  the whole assembly 

t o  the temperature (- 190°C) f o r  optimum CdS c rys t a l  growth (Fig. 3b), 

2) two iden t i ca l  gold plated quartz o sc i l l a to r  
** 

c rys t a l s  cut f o r  g 000 

MHz resonant operation mounted inside the substrate  holder with one 

c rys t a l  having a face exposedto  the  vapor (Fig. 3a), 3) a mount f o r  

holding the semiconductor substrates  t o  be coated with a CdS f i l m  and 

4) a remotely operated shut te r  t o  expose the substrates  and microbalance 

c rys t a l  during vapor growth. The two quartz o s c i l l a t o r  c rys t a l s  a r e  

connected to o s c i l l a t o r  c i r c u i t s  external  to t he  vacuum system. The 

osc i l l a to r  outputs a r e  mixed, and the resu l t ing  difference frequency 

s ignal  is  amplified and fed  i n t o  a frequency mete I? whose output i s  

A monitored with a s t r i p  chart  recorder . The c i r cu i t ry  involved i s  

shown i n  Fig. 4. 

* Obtained from General Elec t r ic  Company, Willoughby, Ohio 
** Reeves Hoffman, Carl is le ,  Pennsylvania, Type HC-6/U holder 
/ General Radio Type 1142-A frequency meter and discriminator 
A Honeywell Electronik 19 two pen recorder 
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heated inner 

Figure 2 - Schematic diagram of the  essent ia l  par ts  of the revised 
CdS f i l m  growth system. 
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a - Bottom view - Open 
This view shows the two 
quartz oscillator crystals 
and the exposed substrates. 

b - Top view - Open 
The heater i s  visible i n  
t h i s  view. 

c. - Bottom view - Covered 
Th i s  photo shaws the complete 
unit with shutter open- 

Figure 3 - Three views of 
the substrate 
holder and micro- 
balance * 
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QUARTZ OSCILLATOR 
CRYSTALS IN MICROE)ALANCE 

115 

t 22 V REGULATED 

Figure4  - Schematic diagram of t he  c i r c u i t r y  used 
i n  t h e  quartz c r y s t a l  microbalance. 

~ FREQ. 



-14 - 

The performance of the  microbalance w a s  very sa t i s f ac to ry  i n  i t s  

s t a b i l i t y  and i t s  response t o  the  growth of a CdS film. The d r i f t  i n  t h e  

difference frequency between t h e  two o s c i l l a t o r  c rys t a l s  w a s  repeatedly 

less than 0.4 kHz i n  bringing t h e  substrate  holder-microbalance temperature 

up t o  190°C. 

balance c rys t a l  but not t he  other) w a s  even smaller amounting usual ly  t o  

The effect of opening the  shu t t e r  (which exposes one micro- 

l e s s  than 0 .1  kHz. 

2500 CdS f i lm i s  23 kHz. The CdS f i lm w a s  cleaned from t h e  microbalance 

The t o t a l  frequency change resu l t ing  from growth of a 

c r y s t a l  after each evaporation by inser t ing  the  c r y s t a l  f o r  a f e w  seconds 

i n  HCR. 

Quartz Crystal  Microbalance Reading 

The quartz c rys t a l  microbalance operates by v i r tue  of the change i n  

resonant frequency of t he  o s c i l l a t o r  c rys t a l  caused by i t s  increased thick-  

ness due t o  the  CdS fi lm. Consider a c r y s t a l  of thickness S and a f i lm  

deposited on t h e  surface of thickness dS. Before deposit ion of t he  film, 

t h e  thickness of the  c r y s t a l  i s  related t o  the  round t r i p  t r a n s i t  time, T, 

of an acoustic wave from one end t o  the  other and back by t h e  acoustic 

velocity, v i n  the  c r y s t a l  
C’ 

Di f fe ren t ia te  S with respect t o  T to obtain the  change i n  thickness 

corresponding t o  a change i n  acoustic t r a n s i t  t i m e  

V 
dT . C dS = - 2 

If the  change i n  thickness i s  now a t h i n  f i l m  w i t h  a d i f fe ren t  acoustic 

veloci ty  v then it w i l l  be wr i t t en  as t’ 

V 
as = - dT . 2 
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For a resonant c rys t a l  t h e  acoustic transit time, T, i s  precisely 

t h e  resonant period f o r  a frequency 21 

thus the  change i n  period corresponding t o  a change i n  resonant 

frequency i s  

yielding f o r  a change i n  thickness 

5 For shear waves i n  CdS v = 1.757 x 10 

quartz c rys ta l s  which are resonant a t  9-00 MHz, 

cm/sec yielding f o r  OUT t 

( z$dS = 108.5 a/KHz 

- 2 - Ion Bombardment Cleaning - An important fea ture  of t h i s  

method of CdS f i l m  growth i s  t h a t  t he  substrate  not be d i r e c t l y  exposed 

t o  the boi l ing cadmium and sulfur. A ba f f l e  i s  therefore  included i n  

t he  apparatus between the  crucibles  and t h e  substrate  holder. I n  

order t o  provide ion-bombardment cleaning of t he  substrates ,  t h i s  

ba f f l e  w a s  o r ig ina l ly  connected t o  one s ide  of a 2 KV AC po ten t i a l  

with the  other s ide of t h e  A.C. po ten t ia l  t i e d  t o  the  substrate  holder. 

Several d i f f i c u l t i e s  arose from t h i s  arrangement. The evaporated gold 

electrode on the  microbalance c rys t a l  suffered ser ious damage from 

cathodic sput ter ing such a s  t o  make the  microbalance inoperative. 
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Furthermore, it was found t h a t  a contaminant f i l m  tended t o  bu i ld  up 

on the  substrate.  

Reference, t o  papers by L. Hollandx5 on t h e  cleaning of g lass  

i n  a glow discharge indicated t h a t  both these e f f ec t s  a r e  hazards of 

d i r ec t  ion-bombardment cleaning as we were attempting t o  use here. 

H i s  invest igat ions of t he  cleaning process demonstrated t h a t  an ind i r ec t  

bombardment system was much more su i tab le  especial ly  when contaminants 

a re  present i n  the  system. 

as shown i n  Fig. 2, which a re  physically shielded from the surfaces t o  

This method involves the  use of two electrodes,  

be cleaned. 

cathode dark space causing a sput ter ing of t he  gold electrode filmo 

This a l s o  eliminates the  contamination buildup which r e s u l t s  from electron 

bombardment near the  f r inge  of t h e  cathode dark space. 

ve loc i ty  e lectrons from the  cathode dark space t r a v e l  outwards from the  

electrodes away from the  substrate  where they can do no harm. 

other hand the  ions a r e  scat tered by col l iding with a i r  molecules 

such t h a t  many ions and neut ra l  molecules a r e  sca t te red  onto the  sub- 

s t r a t e  where they dislodge loosely adhered contaminants. 

Thus there  i s  no danger of high energy electrons i n  the  

The high 

On the  

After  i n s t a l l i n g  such a pa i r  of shielded electrodes as shown 

i n  Figo 2, a number of qua l i t a t ive  tests of the cleaning effect iveness  

of t he  ion bombardment were performed. 

bombardment of uncleaned, solvent cleaned, and flame cleaned g lass  

surfaces. The flame cleaned surfaces were used as a cleanl iness  

reference i n  1) wetting t e s t s ,  2) black breath t e s t s ,  and 3) scratch 

These tests involved ion 

t e s t s  using a flamed g lass  bead. 

cleaned b e l l  jar  with no other  equipment inside yielded clean surfaces 

which passed the  above th ree  t e s t s o  

An ion  bombardment run i n  a Larefully 

However, t h e  addi t ion of t he  
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remainder of t h e  equipment i n  the  b e l l  jar tended t o  reduce the effect ive-  

ness of the  ion bombardment cleaning. This d i f f i c u l t y  was eliminated 

by f lushing the  b e l l  jar  with dry  a i r  during the  e n t i r e  ion bombard- 

ment- This was done by introducing a regulated leak i n t o  the  t o p  of 

t he  b e l l  jar a t  a r a t e  j u s t  suf f ic ien t  t o  maintain a pressure of 50 

microns with t h e  diffusion pump wide openo 

current was maintained for 1/2 hour a t  30 ma by adjust ing a var iac  

on the primary of a 9 kv, 60 ma neon sign transformer. 

During ion bombardment, t he  

3 - Evaporation Procedure - Following the  chemical cleaning 

of the  substrate  c rys t a l  and the  microbalance o s c i l l a t o r  c r y s t a l  

described i n  11, and the  ion bombardment cleaning discussed i n  111-2, 

t he  system was pumped down t o  - LOW5 Torr. 

components of t he  evaporator system was then begun with temperatures 

measured by iron-constantin thermocouples. The substrate  holder 

was gradually heated u n t i l  it reached 190°C where it was held with a 

temperature control ler .  Meanwhile t h e  inner b e l l  jar  was heated up 

t o  about 130°C while t h e  cadmium was ra i sed  t o  i t s  melting point a t  

3 2 1 ° C 0  

deposit s t a r t e d  t o  show on the  inner b e l l  jar. 

point of su l fur  i s  l l 3 O 1  some su l fur  was already melting by t h e  t i m e  

t he  outer b e l l  jar  reached 13Ooo 

su l fur  crucible  t o  prevent t h e  su l fur  from heating up too  fast and 

s t a r t i n g  t o  evaporate too  soono 

throughout t h e  system much more readi ly  than t h e  cadmium, s ince su l fur  

The heating of various 

* 

The su l fur  heater  was not turned on u n t i l  some cadmium sul f ide  

Since the  melting 

Aluminum f o i l  was wrapped around t h e  

The sulfur vapor tended t o  diffuse 

simply w i l l  not adhere t o  t h e  warm surfaces. The cadmium, on the  other 

* Temptendor API Instruments Co. 



- 18 - 

5 
hand, tended t o  s t i c k  much more eas i ly  and therefore  did not d i f fuse  

so readily.  

t he  cadmium vapor pressure and the  geometry of t h e  system i n  the  paths 

between the  cadmium crucible  and t h e  substrate.  Some geometries of 

baf f le  arrangement which were t r i e d  resu l ted  i n  no film growth 

whatsoever on t h e  substrates.  

The rate of f i lm growth was thus determined la rge ly  by 

When t h e  f i l m  growth was seen t o  progress wel l  on t h e  inner 

b e l l  j a r ,  the  shut te r  on the  substrate  holder was opened and the  . 

microbalance frequency was monitored. 

held t o  less than 5 E/min. 

The f i l m  growth r a t e  was usually 

4 - Evaluation of CdS Films - A g lass  d i sc  was included i n  the  --------- - 
substrate  holder during each evaporation and was used as a comparator 

between d i f fe ren t  evaporations. The r e s i s t i v i t y  of t he  f i l m  was 

measured i n  each case and found t o  be grea te r  than 2 x 10 8 n-cm 

except i n  some cases where the  Cd vapor pressure had been kept too  

high. I n  those cases, t he  f i l m  had an orange color ra ther  than t h e  

pale yellow charac te r i s t ic  of the  high res is t ivi ty  f i l m s .  

a - 
After removal f r o m t h e  evaporator, t h e  f i l m s  were a l l  

examined i n  monochromatic 5890 a Sodium l i g h t  f o r  interference f r inges  

t o  check t h e  thickness measurement and evaluate t h e  uniformity of t h e  

f i l m s  
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When monochromatic l i g h t  impinges on t h e  CdS film some 

r e f l e c t s  from the  surface and some penetrates t o  the  subs t ra te  from 

which it re f l ec t s .  

two partial waves are i n  phase and reinforce each other as they do f o r  

any i n t e g r a l  multiple half wavelengths. 

one-quarter wavelength they in t e r f e re  destruct ively and produce 

a dark fringe.  

A = 5890 8. 
i s  then Acds = A/n = 2356 8. 
ference or a bright  f r inge  f o r  each half  wavelength or 1178 8. 

When t h e  film thickness i s  a half  wavelength t h e  

If they a r e  odd multiples of 

The sodium l i g h t  used has a wavelength i n  air  of 

I n  CdS with an index of re f rac t ion  n = 2.5 t h e  wavelength 

Thus there  w i l l  be constructive in te r -  

Since the  substrate  i s  masked during the evaporation and the  

vapor pa r t i c l e s  generally approach from angles away from the  normal, 

there  i s  a gradual buildup i n  film thickness a t  t h e  edge ra ther  than 

a sharp cutoff.  

one can count the  number of br ight  f r inges  t o  the  f la t  cent ra l  

region of t he  f i l m .  

multiplying t h i s  number of f r inges  by 1178 8 and estimating the  las t  

f r ac t ion  of a fringe.  

of an InSb ingot held i n  an aluminum r ing  during t h e  f i l m  growth. 

The outside edge of the  aluminum r ing  was masked by the  substrate  holder 

such tha t  t h e  interference f r inges  could be counted a t  t h i s  point. 

The microscope enlargement of t h i s  edge region shows these fr inges 

very clearly.  

extent of nonuniformity. 

Thus, from the  br ight  edge where there  is  no film, 

This provides a d i r ec t  measure of the  film by 

This can be seen i n  Figo 5,which shows a photo 

The picture  of the  ingot and aluminum r ing  reveal  t h e  

Fig. 5 a l s o  shows a microphoto of t he  in te r -  
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Interference photo of f i l m  on aluminum 
ringholder a t  edge shown by arrow on 
middle photo. This shows a thickness a t  
t he  th ickes t  spot on t h e  ingot of 5 1/2 
f r inges  = 6479 8 
Magnification 12.5 X 

InSb ingot E mounted i n  aluminum ring- 
holder. This shows a thickness var ia t ion  
of 1-1/4 f r inge  = 1472 8 over t h e  e n t i r e  
ingot surface. Thus it va r i e s  between 
6479 a and 5007 8 from the  t o p  t o  the  
bottom of the  photo. 
corresponds t o  184 8 across a 3 mm 
diameter rod. 

This var ia t ion  

Edge of g lass  disc  showing 4 
f r inges  from the  masked edge t o  
the body of t he  f i lm  indicat ing 
a thickness of 4 x 1178 8 = 
4712 8 
Magnification 25 X 

Figure 5 - Interference photos of CdS f i lms using sodium l i g h t  (5890 8) .  
Each f r inge  represents an i n t e g r a l  half  wavelength of sodium l i g h t  i n  
the  CdS (index of r e f r ac t ion  = 2.5) and therefore  represents a f i lm 
thickness of 5890 8/(2 x 2.5) = 1-1-78 8. 
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ference f r inges  a t  t he  masked edge of a g lass  d i sc  which was exposed 

t o  the  Cd and S vapors a t  t he  same time. 

here than those on the  aluminum ingot holder s ince t h e  masking edge 

was much thinner  i n  t h i s  case (.010" ins tead  of -125") . 
masking edge causes a much sharper f a l l  off i n  f i l m  thickness. 

The f i l m  thickness on the  microbalance c r y s t a l  was a l s o  

examined with the  Sodium l igh t .  This showed t h e  e f f ec t s  of geometry 

on the  evaporation uniformity. The net r e s u l t  was t h a t  the  f i l m  was 

not very uniform on t h i s  c r y s t a l  and was only about half  as th ick  a s  

on the other substrates.  To within the  accuracy allowed by the  non- 

uniformity, t he  Sodium l i g h t  determination of t he  average film thickrress 

on the  microbalance c r y s t a l  agreed wel l  with the  measure obtained by 

the microbalance frequency change during the  f i l m  growth. 

of f i lm  thickness on the  subs t ra te  t o  t h a t  on the  microbalance c r y s t a l  

was then used i n  subsequent evaporations t o  normalize t h e  microbalance 

readings. 

The f r inges  a r e  much narrower 

The thinner  

This r a t i o  

b - Electron Beam Diffract ion Studies of Film Orientation ------- 
I n  order t o  determine t h e  qua l i ty  of the  f i lms  insofar  

a s  or ien ta t ion  of t he  c r y s t a l  axes i s  concerned, samples of the  f i lms 

were examined by e lec t ron  beam d i f f r ac t ion  i n  t he  RIAS e lec t ron  microscope. 

The 80 kev electron beam i s  allowed t o  s t r i k e  the  f i l m  with grazing 

incidence and the  r e f l ec t ion  d i f f r ac t ion  pa t te rn  i s  photographed. 

Crystal planes which s a t i s f y  the  Bragg d i f f r ac t ion  condition then 

s c a t t e r  e lectrons i n t o  spots  on the  photographic plate .  

f o r  CdS f i lms  on two d i f f e ren t  subs t ra tes  a r e  shown i n  Fig. 6.  

* 

The r e s u l t s  

The top  

* JEN k c . ,  Tokyo, Japan serviced by JEOLCO, Inc.(USA), Medford, Mass. 02155 



- 22- 

pat tern was obtained with t h e  film grown on the  g l a s s  d i sc  which was 

exposed t o  the  same evaporation as t h e  InSb substrate  from ingot E 

whose d i f f r ac t ion  pa t te rn  is  a l s o  i n  Fig. 6. 

The g l a s s  shows d i f f r ac t ion  spots cha rac t e r i s t i c  of an or iented 

film. The spots demonstrate t h a t  t h e  c-axis is  normal t o  the  f i l m  

plane, i.e. the  spots along a v e r t i c l e  l i n e  from the  center a r e  

spaced exactly r igh t  f o r  multiple order re f lec t ions  from the(OO4 planes 

of CdS. 

i s  polycrystal l ine with a var ia t ion  of about - f 5' i n  t h e  c-axis 

or ien ta t ion  . 

The spreading of t h e  spots i n t o  l i n e s  reveals t h a t  t he  sample 

One would expect a b e t t e r  or ien ta t ion  on a s ingle  c r y s t a l  

substrate  such as InSb than on glass.  However, t h e  d i f f r ac t ion  pa t te rn  

shown i n  Fig. 6 f o r  t he  CdS film on InSb showed no spot pat tern a t  all.  

This indicated t h a t  t he  film was completely amorphous. The most l i k e l y  

reason f o r  t h i s  i s  the  surface roughness of the  In% crys ta l .  I n  order 

t o  maintain f l a tnes s  and paral le l ism i n  polishing t h e  In% ingot 

surface smoothness had been sacr i f iced.  

Another piece of In%, E-4, from ingot E was therefore  polished 

t o  a very high grade f i n i s h  on a polishing wheel, without regard f o r  

f l a t n e s s  and parallelism. 

#l3, taken with t h i s  sample at  two or ientat ions ro t a t ed  90 

other i n  the  electron beam are shown i n  Fig. 7a and 

show t h e  cha rac t e r i s t i c  CdS pattern.  However, it i s  evident i n  n, 
t h a t  t he  spot, pa t te rn  seems t o  be composed of double spots, indicating 

t h a t  t he  c r y s t a l l i t e s  of CdS have two preferred or ien ta t ions  t i l t e d  

Two d i f f r ac t ion  pa t te rns  of a CdS film, 

0 from each 

The p ic tures  
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a - d i f f r ac t ion  pa t te rn  f o r  CdS f i l m  on 
g l a s s  substrate .  The locat ions of 
the  spots  a r e  a l l  i n  good agree- 
ment with the  tabulated d spacings 
f o r  hexagonal CdS with t h e  c-axis 
or iented normal t o  the  f i l m  plane. 
The circumferential  spread of the  
spots ind ica tes  a 3- 5 O  var i a t ion  
i n  t h e  c-axis or ie ika t ion  of 
the  c r y s t a l l i t e s .  

Figure 6 - Reflection e lec t ron  d i f f r ac t ion  pa t te rns  f o r  CdS f i lms  
grown i n  run #lo. Electron energy 80 kv. 



b - Diffract ion pa t te rn  s i m i l a r  
t o  a- but with double spots  
caused by electron beam running 
perpendicular t o  polishing 
r idges  e 

Figure 7 - Reflection e lec t ron  d i f f r ac t ion  patterns f o r  CdS films grown 
on InSb. 
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about 20' apart .  

t h i s  e f f ec t  was observed, there  was no such doubling of spots (Fig. 7a). 

When viewed a t  r i gh t  angles t o  the  direct ion i n  which 

Evidently the direct ion of polishing introduced by the  wheel produced 

enough of a preferred direct ion of r idges t o  cause the  c r y s t a l l i t e s  

t o  form along both s ides  of t he  ridges giving double spots when viewed 

by the electrons p a r a l l e l  t o  t he  ridges and s ingle  spots when electrons 

impinge normal t o  the  ridges. 

The remainder of the  ingot was then repolished t o  a higher 

grade opt ica l  f in i sh ,  while s t i l l  maintaining reasonable f l a tnes s  and 

parallelism, and new CdS f i lms were deposited on the  surfaces. 

d i f f rac t ion  pat tern f o r  t h i s  film, #19, i s  seen i n  Fig. 7c. 

The 

The 

diffuseness of the spots indicates  t h a t  the  c r y s t a l l i t e s  a r e  very 

small, but there  was no evidence of a preferred or ientat ion a s  evidenced 

by the  wheel polished surface. 

c rys ta l s  represented by Fig. 6b and Fig. 7c a r e  shown i n  Fig. 8. 

The surface f in i shes  on the two InSb 

These a r e  photomicrographs taken a t  a magnification of 3OOx i n  the  

phase contrast  microscopdf These give some idea of t he  improvement 

i n  surface smoothness required t o  obtain oriented films. 

c - A c o E t i c  Tests of CdS Transducers 

I n  order t o  t e s t  the  CdS transducer eff ic iency some 

&cut quartz rods with the same specif icat ions as the  x-cut quartz 

rods which were used a s  transducers were obtained . Films from * 

-- 
T L e i t  z-Wet z l a r  , Germany 
* Valpey Corporation, Holliston, Massachusetts 01.746 



a - InSb E5 before deposition 
of CdS film. The f i lm  
on t h i s  surface gave 
d i f f rac t ion  pat tern 
i n  Figure 6b. 

b - InSb E7 before deposition 
of CdS film. The f i lm  
on t h i s  surface gave 
d i f f r ac t ion  pat tern i n  
Figure 7c. 

Figure 8 - Photomicrographs of polished surfaces on InSb c rys t a l s  E5 and 
E7 taken with phase contrast  microscope a t  magnification ~ O O X ,  
showing the  difference i n  the  qua l i ty  of t he  polish required t o  
ge t  oriented CdS films. 



A. - 27 - 

evaporation #l3 on two z-cut quartz c rys t a l s  w e r e  tested f o r  transducer 

eff ic iency i n  the  microwave acoustics system. Since the  z-axis of quartz 

i s  not piezoelectr ic  one does not ge t  any transducer act ion on the  par t  

of the  quartz, only t he  CdS film. The first acoustic echoes f o r  both 

these rods were about 42 db above the  noise which is about 10 db less 

e f f i c i en t  than the  b e t t e r  x-cut quartz transducers. 

Films w e r e  deposited on crys ta l s  from ingot D i n  which acoustic 

waves had previously been seen with the  use of x-cut quartz transducers 

(Section V) and a l so  on E-5 as discussed above i n  Section 111-4-b. NO 

acoustic echoes were seen with the  use of these fi lms which were found 

subsequently t o  be amorphous by t h e  electron d i f f r ac t ion  tests. 

film, #19, deposited on In%-ma which w a s  shown i n  111-4-b t o  have crys- 

t a l l i n e  s t ruc ture  w a s  a l so  unsuccessful i n  producing observable acoustic 

echoes. Similarly, the  same f i l m  on rods E7f, E7h and E 7 i  cut from the 

same piece resul ted i n  no echoes. 

transducer (Section V) on InSb-mi 

E7a ) w a s  successful i n  producing echoes 17 db above the  noise. 

the 10 db lo s s  i n  eff ic iency which w a s  observed f o r  the  CdS fi lms on 

z-cut quartz applies t o  the  In%, t h e  echoes f o r  E7a should have been 

v is ib le  7 db above the  noise. However there  are two fac tors  which would 

tend t o  reduce t h i s  eff ic iency fu r the r  with the  InSb. 

s m a l l  c r y s t a l l i t e  s i z e  observed (Section 111-4-b) f o r  the  CdS fi lm on 

Insb-E7a. 

The 

Subsequent tests using an x-cut quartz 

(which w a s  cut from the  same piece as 

Thus, i f  

The first i s  the  

The other fac tor  is  a reduction t o  55% of i t s  or ig ina l  value 

i n  the  Q of the microwave cavi ty  which occurs when InSb rods are inser ted 

instead of quartz rods. This has the  e f f ec t  of reducing the  amplitude of 

t h e  microwave e l e c t r i c  f i e l d  across the  gap where the  rod is  inser ted and 

thus reducing the  transduction efficiency. 
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IV* THEORY OF EZECTRON-PHONON INTERACTIONS 

The at tenuat ion of acoust ic  waves by in te rac t ion  with conduction 

electrons i n  s ingle  va l ley  semiconductors was t r ea t ed  for a number of 

circumstances by Mikoshiba2 using t h e  approach developed by Pippard 

for monovalent metals. He calculated t h e  acoustic attenuation, a, 

and the  inverse e f fec t ,  t h e  acoustoelectr ic  potent ia l ,  F, f o r  both 

qR > 1 and qR < l w h e r e  1 i s  the electron mean f r e e  path and 

q = 27r,/A i s  the  acoustic wave number. The mean f r e e  path i s  derived 

from 1 = v T where v i s  t h e  mean electron thermal ve loc i ty  and 

T = (m/e) 

e lectron mobility.) 

degenerate s t a t i s t i c s  t o  apply then the  mean ve loc i ty  i s  simply the  

Fermi velocity.  On t h e  other  hand, v becomes t h e  k ine t ic  ve loc i ty  

associated with the  mean Boltzman energy i f  t he  electrons a r e  i so l a t ed  

enough to obey non-degenerate s t a t i s t i c s .  Our experiments with high 

puri ty  InSb i n  the  9 GHz range a r e  pr inc ipa l ly  i n  the  region of 

non-degenerate s t a t i s t i c s  and with ql  > 1. The acoustoelectr ic  e f fec t  

16 

e e 

i s  the mean time between electron co l l i s ionso  (p i s  t h e  

If t h e  electron density i s  great  enough f o r  

e 

i s  observed as a voltage pulse across the  semiconductor which occurs 

a s  a r e s u l t  of t he  passage of t he  acoustic waveo 

poten t ia l  and t h e  at tenuat ion coef f ic ien t  a r e  r e l a t ed  by 

The acoustoelectr ic  

N e  vs 
F P > 
a = .p, 

where 

N = c a r r i e r  e lectron concentration 

v = veloci ty  of sound 
S 
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and I’ - = pluI2 vs/2 i s  the  acoustic energy flow density. It therefore  

represents t he  acoustic power per un i t  area Ted i n t o  the c r y s t a l  by the  

transducer. 

The expressions fo r  attenuation, a, can be wr i t ten  i n  terms 

of a temperature dependent term A(T) and of a temperature independent 

coupling coeff ic ient  K which involves a piezoelectr ic  coupling coeff ic ient  

K and a deformation poten t ia l  coeff ic ient  Kd* 
P 

Thus 

a = K ~ A ( T )  

I n  the  (100) d i rec t ion  i n  the 111-V cubic compounds K * = 0 
P 

2 2 and measurements thus y i e ld  Kd 

and Kd2 contribute- I n  these experiments t h e  absolute value of a i s  

d i f f i c u l t  t o  measure accurately because of uncertaint ies  i n  transducer 

eff ic iency and because of other  losses  besides e lec t ronic  attenuation. 

However, the value of K 

i n  the measurements and t h e  absolute value of a obtained f romthe  

intercept  

In  the (111) direct ion,  both K 
P 

2 can be obtained from the  slope of a vs. A(T) 

2 An independent and valuable determination of K can be obtained 

by taking i n t o  account the e f f ec t  of an electron &if t  ve loc i ty  on the 

1 attenuation. 

f o r  both qa > 1 and qR < 1 and by White 

form but includes the  term r = l-(pE)/vs which embodies t h e  e l e c t r i c  

f i e l d  dependence of the  attenuation. 

The theory f o r  t h i s  circumstance derived by Spector 

6 f o r  qR < 1 has t h e  same basic  
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These theor ies  y i e ld  

a = 8 A(T,y)j 

where 

(4) 

and 

where 

e 
P 

C 

wC 

0- 

E 

r 

I.L 

E 

co 

% 
D 

k 

T 

e 

V e 

f o r  q i  > 1 ( 6 )  

piezoelectr ic  constant i n  the  direct ion of acoust ic  
propagation 

e l a s t i c  constant f o r  t h e  relevant d i rec t ion  of 
acoustic propagation and polar izat ion 

= d i e l e c t r i c  re laxat ion frequency 
E 

e l e c t r i c a l  conductivity 

d i e l e c t r i c  permetivity 

1 -  llE 
v 

S 

electron mobility 

applied e l e c t r i c  f i e l d  

acoustic wave c i rcu lar  frequency 

vs2/D = diffusion frequency 

diffusion constant = 2F (by E ins t e in  r e l a t ion )  

Boltzman constant 

e lectron temperature 

e lec t ronic  charge 

mean electron ve loc i ty  (discussed above) 
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The expressions f o r  A(T, r )  reduce t o  those f o r  A(T) derived by 

2 Mikoshiba when r = 1 i.eo when the  applied e l e c t r i c  f i e l d  i s  zeroo The 

values of A(T) calculated for In% Ingot E f o r  which w e  measured the  

conductivity and H a l l  coeff ic ient  are shown i n  Figure 9 .  This sample 

had a net c a r r i e r  concentration of N = 1.1 x lox4 derived from 

our H a l l  coeff ic ient  measurement. 

6 1 The equivalence of '6.Thite's equation f o r  A(T,r)  t o  Spector's 

expression f o r  t he  corresponding case of qR < 1  i s  not obvious since 

Spector's equation appears i n  t h e  form 

where 

cu = electron plasma frequency = 
P 

= piezoelectr ic  constant dxz 

P = mass density of c rys t a l  

V = Fermi ve loc i ty  of conduction electrons F 

We can t r y  t o  cas t  equation (7) i n t o  the  form of (5) ,  which i s  

bas ica l ly  White's form, i n  order t o  compare the  predictions of the two 

theories  f o r  t h e  same app l i cab i l i t y  (qR < 1 and piezoelectr ic  coupling), 

However, we must note t h a t  mite derived equation (5) using non-degenerate 

e lectron s t a t i s t i c s  whereas Spector derived (7) using degenerate Fermi 

s t a t i s t i c s .  

2 Note t h a t :  q = a/.,, and pv = c 0  
S 

W e  can make these subs t i tu t ions  i n  (7) and divide numerator and 
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4 denominator by (w/w ) yielding: 
P 

2 2 
(8 )  T w 2 d  

a = - P - X Z -  

S 
p< 12 7r c vs 3 v  

Noting t h e  def in i t ion  of t h e  d i e l e c t r i c  re laxat ion frequency i n  (5) 

we see t h a t :  

we saw t h a t  t he  electron mobility i s  r e l a t ed  t o  t h e  mean co l l i s ion  time, 

7, by 
e 

T o  = -G- 

2 Thus 

2 = w 2  7 0  
- N e  - --- 

(UC mE: P 

Now equation (8) becomes 

This looks very much l i k e  t h e  form of (5) where t h e  piezo- 

e l e c t r i c  coupling constant would be 

It i s  d i f f i c u l t  t o  r e l a t e  t h i s  expression exact ly  to t h e  

since Spector uses a ra ther  unconventional piezoelectr ic  constant e If 

w e  presume t h a t  t he  two coupling coef f ic ien ts  are equivalent, w e  can now 
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examine t h e  equivalence of t h e  two theor ieso  The two expressions (5) 

and (9) a re  now iden t i ca l  except for the  last t e r m  i n  t h e  denominator 

of both, v i z  

2 

and - - 2 

V 
re  spe e t  ive ly  cur F 

3 v  S 
cud 

According t o  t h e  def in i t ion  of cud, w e  see t h a t  

Thus the  two last terms become 

Tr  2 

S S 

and it becomes evident i n  comparing these terms f r o m t h e  two theor ies  

t h a t  if we equate t h e  Fermi energy = - mv t o  the  Boltzman mean 

energy = 3/2 kT then these two terms a re  ident ica l .  

demonstrates where the  difference between degenerate and non-degenerate 

2 F  

This comparison 

s t a t i s t i c s  appears i n  t h e  two theories.  

deformation poten t ia l  coupling i n  t he  region of q l  < 1 similar ly  

Spector's equation f o r  

reduces t o  equation (5) except f o r  a f ac to r  of 2/3. When y- = 1 

Mikoshiba's r e s u l t  agrees exact ly  with Spector's, ra ther  than 17hite'so 

Equation (6) was obtained from Spector's theory by using the  same 

transformations t h a t  were involved i n  going from equation (7) t o  

equation (5) 
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The expressions f o r  A(T,y) a r e  antisymmetric about r = 0 yield- 

ing a negative attenuation, or gain, when r < 0. The interpretat ion,  

however, i s  not qu i te  so simple as might be presumed from the form of 

t h e  theore t ica l  expressions, since t h e  mobility p i s  a function of t h e  

e l e c t r i c  f i e l d  E which can be seen from our measurements of p VS. E 

i n  Fig. 10. 

dependence of p on E i s  due t o  the  r i s e  i n  e lectron temperature produced 

by the  e l e c t r i c  f i e ld .  

A(T,r) has t o  include t h e  electron temperature change produced by the 

f i e ld .  The electron temperature dependence of the mobility i s  obtained 

from measurements of mobility as a function of l a t t i c e  temperature as 

discussed i n  Section V I  and shown i n  Figure 11. 

A(T,r)  on e l e c t r i c  f i e l d  i s  thus calculated using t h i s  measured 

dependence of mobility and electron temperature on e l e c t r i c  f i e l d ,  

yielding the  at tenuat ion and amplification curve shown i n  Figure 12- 

(These are discussed i n  Section V I . )  Moreover, the 

Therefore the  e l e c t r i c  f i e l d  dependence of 

The dependence of 

V-  PHOKIN PROPAGATION IN InSb 

- 1-.318 cm long - It was indicated i n  Section Tv 

that  one can obtain a measure of the coupling coeff ic ient  8 by 

measuring the  slope of A(T) vso a and tha t  t h e  absolute a t tenuat ion can 

be obtained from the  intercepto Fromthe data obtained i n  the  previous 

work'' with InSb-C1, it was evident t h a t  a decrease i n  acoust ic  

a t tenuat ion accompanied a r ise i n  temperature from 4.2' t o  1405~K. 

Because of t he  large interference effects, t he  change i n  a t tenuat ion 

per un i t  length obtained from these measuranents var ied g rea t ly  from 

echo t o  echo such t h a t  t he  increase i n  amplitude was a s  high as 
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Figure 11 - Measured values of mobility dependence on l a t t i c e  
temperature f o r  In% with N = 1014cm-3. 



- 3 8 -  

50 

10 

5 

1 .o 

0.5 

0.2 

ATTENUATION 4. I #GAIN 

a/K2 = A(T,Y (db/cm) 
Figure 12 - Calculated dependence of A(T, r) on e l e c t r i c  f i e l d  for ql > 1 

f o r  t he  sample whose mobility measurements are given i n  
Figures 10 and 11. 
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0 3 db/cm i n  going from 4.2 

six echoes representing one acoust ic  round t r i p  through the InSb and 

s i x  more echoes representing two round t r i p s ,  it seems reasonable t o  

t o  14.5OK. However, s ince there  were 

average the  measured changes i n  order t o  average out t he  interference 

e f fec tso  The r e s u l t s  of t h i s  procedure are shown i n  Fig. 1.3 with I 

% being the measured decrease i n  a t tenuat ion r e l a t i v e  t o  4.2 KO 0 We note 

from Fig. 9 t h a t  the  t r a n s i t i o n  from v a l i d i t y  of t he  qR > 1 theory t o  the  

q1 < 1 theory occurs i n  the  v i c i n i t y  of 7OK. 

values of A(T) t o  be r e l i a b l e  i n  t h i s  region. 

ments a t  4.2'K and 1bO5OK as points where t h e  theories  are v a l i d  

t o  determine the  slope and intercept  of a vs. A(T) .  

r e s u l t s  t h a t  t h e  absolute a t tenuat ion a t  4.2OK is  a. = 12 db/cm and 

the  coupling coeff ic ient  i s  8 = 3.3 x 10- 

Thus one does n s t  expect t h e  

W e  therefore  take the measure- 

We get the 

4 

It i s  in te res t ing  t o  compare t h i s  value of a with upper l i m i t  
0 

values of a. obtained from absolute eff ic iency determinations of the 

acoustic transducero From the r e s u l t s  with Ins-C1,  t h e  l a rges t  echo 

was (1-3). This represents two passages through t h e  InSb-quartz bond 

and two ref lec t ions  from the bondo 

was estimated a t  1 db and the  power l o s s  on r e f l ec t ion  a t  7 db. 

(The acoustic match i s  such as t o  give - 8% transmission and - 2% 
re f lec t ion) .  This echo had a measured amplitude of -43 dbm as com- 

pared t o  -18 dbm f o r  the f irst  echo from the quartz transducer, Qi6, 

before having.the InSb attachedo Thus of the 25 db (43 dbm-18 dbm = 

25 db) reduction i n  amplitude seen i n  echo (l-3), 1 + 1 + 7 + 7 = 16 db 

i s  caused by power losses  a t  t h e  various transmissions and r e f l ec t ions  

The power loss upon transmission 
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6 

4 

2 

14.5OK 010 = 12 db/cm 

0 1 acoustic round trip through InSb 

0 2 acoustic round trips through InSb 

Figure 13 - Determination of the coupling coefficient 8 and t h e  absolute 
attenuation a. from the temperature variation of measured 
attenuation. 
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leaving 9 db at tenuat ion i n  the  round t r i p  through t h e  In%. 

t h i s  c rys t a l  was 0.318 em long, t h i s  represents a value of lk02 db/cm 

f o r  an upper l i m i t  t o  a 

deduced from the  A(T)  VS. a! intercept .  

Since 

T h i s  i s  not t oo  far  from the value of 12 db/cm 
0 

The value of coupling coeff ic ient ,  2, deduced from the slope 

-4 determination agrees exactly with a value of 8 = 3.3 x 10 

by N i l l  by f i t t i n g  magnetoacoustic a t tenuat ion data a t  9 GHz. 

However, t h e  slope of the  at tenuat ion versus temperature which we 

obtained i s  considerably greater than t h a t  shown by N i l l  i n  t he  same 

work. 

obtained 

1-7 

He saw a change of only 1.3 db/cm between 4.2'K and 14.5OK. 

2 - InSb - D3b, -D3e, C2b - I n  order t o  obtain a b e t t e r  idea 

of the  consistency of r e s u l t s  f o r  the  absolute a t tenuat ion of acoustic 

waves i n  InSb a number of other short  c rys t a l s  were attached t o  quartz 

transducers.simi1ar t o  InSb-Cl discussed above. 

---I_ 

Short c rys t a l s  have 

the advantage t h a t  the acoust ic  path i s  short  and so echoes are s t i l l  

measureable even with a large attenuation. However such short  

c rys ta l s  cannot have e l e c t r i c a l  contacts attached f o r  pulsing wi th  an 

e l e c t r i c  f i e l d  since the  contacts would be too  close together f o r  

meaningful resu l t s .  Moreover t h e  acoust ic  t r a n s i t  t i m e  i s  so  short  

that ,  if a CdS f i l m  transducer i s  used, the  f irst  echo re turns  before 

the  receiver sa tura t ion  from the magnetron pulse has recovered. It 

i s  therefore  necessary t o  use as a buffer, a quartz rod transducer 

as i n  the previous experiment. 

Thus a d isc  0.455'' i n  diameter and 0022" t h i ck  from ingot D 

was polished as described i n  Section 11. It was glued t o  a 0.25" . 

diameter x-cut quartz transducer and examined f o r  echoes. None were 



observed f r o m t h e  InSb and a f t e r  removing the assembly from the  cryo- 

stat, t he  c rys t a l s  f e l l  apart with a piece of InSb having broken away 

from the c rys t a l  and remained glued t o  the  quartz. 

The remaining portion of the  InSb c rys t a l  w a s  then ground down and 

repolished, t h i s  time w i t h  a thickness of 0.144" remaining. 

the smaller diameter (0.118") quartz transducers was glued to the  

center of t h i s  c rys t a l  and tes ted.  

quartz - InSb in te r face  were v i s i b l e  but none from the  f a r  end of the 

InSb. This quartz c rys t a l  was then separated by dissolving the  glue 

and it was found t h a t  the  InSb had developed a crack a l l  around 

where the quartz had been attached. 

configurations of diss imilar  diameters produced too great a s t r e s s  on 

the InSb. 

One of 

Again 5 re f lec t ions  from the  

It thus appeared a s  though such 

A rod 0.118" i n  diameter was then cut from between the  edge 

T h i s  rod, and the center of th i s  d isc  with the  ul t rasonic  cut ter .  

InSb-D3bJ was glued to the  same quartz crystal ,  Qi7, used i n  the 

previous t e s t  and examined f o r  echoes. 

the  InSb were not a t  a l l  as large a s  those observed with InSb-C1. 

Ten re f lec t ions  from the  InSb were observed i n  t h i s  c rys t a l  whose 

echo pa t te rn  i s  shown i n  Figure 14a. 

f ive  quartz re f lec t ions  (0-1, 0-2, 0-3 etc.) and the  first f i v e  InSb 

re f lec t ions  (1-1, 1-2, 1-3 etc.). The la rges t  InSb r e f l ec t ion  (1-3) 

was 12 db above noise. 

was cut from the  d isc  and mounted on a quartz transducer and tested.  

No  echoes were seen from the InSb i n  t h i s  case, only the  re f lec t ions  

from the  quartz-InSb interface.  

This time re f lec t ions  from 

T h i s  picture  shows the  f i r s t  

A second 0.118" diameter piece (InSb-D3c) 

A t h i rd  s imilar  piece (InSb-D3d) was 
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a InSb -D3b on 
Transducer Qi7 

b - InSb -D3e on 
Transducer Qi8 

2-1 2-2 2-3 2-4 2-5 2-8 2-9 

c -  InSb 
Tran 

-C2b on 
sducer Q i 4  

2-1 2-2 2-3 I 2-4 I ‘--?I 2-61 2-7 2- 10 

3-1. 3-3 3-4 3-5 3-6 3-7 

Figure 14 - Acoustic echoes a t  9.3 GHz for three InSb samples attached t o  quartz 
transducers rods. The symbols on the  l ines  pointing t o  the various 
echoes denote the number of round t r i p s  th ru  InSb and th ru  quartz, 
e.g. 1-2 denotes one round t r i p  th ru  InSb and two th ru  quartz. 



- 44 - 

cut and t e s t ed  with s t i l l  no InSb ref lect ions.  F ina l ly  a four th  

piece (InSb-D3e) was cut and glued t o  t h e  quartz transducer with 

the  r e s u l t s  shown i n  Figure 14b. 

from the  InSb including multiple re f lec t ions  such as 2-3, 2-4 and 2-5. 

Here the  la rges t  InSb r e f l ec t ion  i s  1-6 which i s  20 db above noise. 

The d i f f i cu l ty  i n  ge t t ing  a r e l i a b l e  bond between the  quartz 

I n  t h i s  case, w e  see again re f lec t ions  

transducer and t h e  InSb c r y s t a l  seems t o  be the  predominant f ac to r  

involved i n  t he  f a i l u r e  t o  get  phonon propagation i n  two out of t h e  

four cases discussed above. Subsequent microscope examination of 

t h e  bond i n  t h e  case of InSb-D3d showed a breaking away of t he  bond 

over most of t h e  surface with three  op t i ca l  interference f r inges  i n  

evidence. 

A f i n a l  attempt was made t o  obtain rods from ingot C 

by polishing a t h i n  d isc  which s t i l l  remained. 

of the  d isc  it had to be mounted on a backing g l a s s  during polishing 

t o  prevent flexing. 

(InSb-C2a, C2b) were cut from t h i s ,  glued to quartz transducers 

(Qi8  and Qi4 respectively) and t e s t e d  f o r  echoes. 

were seen from C2a but they were seen with C2b. The acoust ic  echoes 

from t h i s  assembly a r e  seen i n  Fig. 14c where r e f l ec t ions  representing 

two and even three  InSb round t r i p s  are seeno 

r e f l ec t ion  here i s  (1-3) which i s  26 db above noiseo 

Due t o  the  thinness 

Two rods 0.118" diameter and 0.074" long 

No  In% echoes 

The l a rges t  InSb 

The temperature of a l l  these c rys t a l s  was var ied  from 4.2'K 

t o  20°K and no change i n  amplitude was observed i n  t h e  echoes as w i t h  

InSb-C1 nor was there  any evidence of t h e  frequency s h i f t  e f f ec t  seed 
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with In%-C1. The bonding of c rys t a l s  here seemed t o  be somewhat 

unrel iable  since echoes were v i s ib l e  from only half  of t h e  attempts 

and those t h a t  were v i s i b l e  resu l ted  i n  very high apparent absolute 

a t tenuat iono It was after these tests t h a t  t he  method f o r  gluing 

c rys ta l s  described i n  Section I1 was in i t i a t ed .  

3 - InSb E7i  0.825 cm long - After  unsuccessful attempts 

a t  seeing echoes with t h e  use of CdS f i l m s  on InSb E7f,  E D ,  and E 7 i  

t h e  l a t t e r  was glued onto quartz transducer QV6 which is  10712 cm 

long corresponding t o  a 6.0 psec acoust ic  round t r i p o  

length corresponds t o  a 4.4 psec round t r i p .  

acoustic re f lec t ions  were v i s i b l e  i n  a n  InSb rod which i s  long enough 

t o  a t t ach  e l e c t r i c a l  contacts. 

with a quartz transducer t h a t  yielded a first echo of 31 dbm before 

attaching t h e  InSb. 

seen here i s  18.2 db/cm. 

The In%-E7i 

For t he  f i r s t  t i m e  

The l a rges t  InSb echo (1-1) was 63 dbm 

Thus the  upper limit t o  t h e  absolute a t tenuat ion 

The current and voltage leads described i n  Section I1 were 
* 

then attached t o  t he  c rys t a l  and pulses from a 5On 

were f e d  through a 7 : l t u r n  pulse transformer t o  give an impedence 

pulse generator 

transformation of 49:l. 

t h e  InSb using t h i s  generator i s  0.6 amps, corresponding t o  a f i e l d  

across the  c r y s t a l  of about 1.2 volts/cme which corresponds t o  a dr i f t  

The s i ze  of a typ ica l  current passed through 

veloci ty  of 207 x 10 5 cm/sece This i s  about 0.7 times t h e  sonic ve loc i ty  

i n  the  (111) di rec t ion  i n  In%. 

(1-1) and i n  other echoes passing through t h e  In% has apparently been 

An increase i n  amplitude i n  t h e  echo 

achieved when t h e  applied pulse was coincident with t h e  t i m e  t h a t  the' 

* Hewlett Packard Model 21% 
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* 
acoust ic  wave i s  t ravers ing the In%. 

which had been ordered f o r  t h i s  t a s k  was received shor t ly  before the 

end of t h e  contract  period. 

pulser. It seems t o  ve r i fy  and, i n  f ac t ,  t o  magnify t h e  presence of 

a decreased at tenuat ion when the  current pulse i s  coincident with 

the  t i m e  of t r ave r sa l  of t h e  In% by the  acoust ic  signal. 

the interpretat ion,  analysis ,  and fu r the r  exploi ta t ion and 

confirmation of these r e s u l t s  a r e  now beyond the scope of th i s  reporto 

A high current pulse generator 

A preliminary run has been made with t h i s  

However, 

V I .  HOT ELECTRON EFTECTS 

A s  discussed i n  Section IV, the  at tenuat ion or amplification 

a t  low l a t t i c e  temperatures i s  expected t o  be a l t e r e d  s igni f icant ly  

by increases i n  e lectron temperature due t o  applied e l e c t r i c  f i e l d s  18,19 

Effects  due t o  hot e lectrons are most evident from studies  of e l e c t r i c a l  

conductivity a t  high e l e c t r i c  f i e l d s  and low l a t t i c e  temperatures 20- 24 
0 

Such increases i n  e lectron temperature are r e l a t ed  t o  t h e  r a t e  

of energy loss associated with the  sca t te r ing  mechanism. 

temperatures, ionized and neut ra l  impurity sca t te r ing  a r e  the pre- 

dominant processes f o r  momentum t r ans fe r  which i n  tu rn  i s  responsible 

A t  low 

for the  behavior of e l e c t r i c a l  conductivity. 

t r ans fe r  per co l l i s ion  may be high, t h e  f r a c t i o n a l  energy loss  per 

co l l i s ion  w i l l  be qui te  small, however, due t o  the  r e l a t i v e l y  large 

mass of t h e  sca t te r ing  centero 

Although t h e  momentum 

Thus, energy supplied t o  e lectrons by 

* Cober Electronics,  Inco Stamford Connecticut 06902 
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the  external  f i e l d  i s  readi ly  randomized by the  sca t te r ing  process 

and the  result  i s  an elevat ion of e lectron temperature. 

conditions, the electron system i s  weakly coupled thermally t o  the 

Under these 

l a t t i c e .  A t  higher l a t t i c e  temperatures, thermal coupling between 

electrons and l a t t i c e  i s  enhanced by phonon in te rac t ions  hence the 

electron and l a t t i c e  temperatures never separate appreciably and 

consequently hot e lectron e f f ec t s  become insignif icant .  

A rise i n  e lectron temperature is  manifested a t  low l a t t i c e  

temperature a s  an increase i n  the  observed conductivity or mobility. 

That t he  mobility should increase with increasing f i e l d s  i s  evident 

from the  dependence of mobility on l a t t i c e  temperature a t  low f i e l d  

strengths 

The mobility i s  calculated by averaging t h e  relaxat ion t i m e  

f o r  momentum t r ans fe r  over t h e  (electron) d i s t r ibu t ion  function. For 

impurity scat ter ing,  the  relaxat ion t i m e  i s  e s sen t i a l ly  independent 

of l a t t i c e  temperature i n  contrast  t o  t he  s i t ua t ion  a t  higher l a t t i c e  

temperatures where phonon sca t te r ing  dominates and the  relaxat ion 

time has an inverse dependence on l a t t i c e  temperature25 

the  relaxat ion t i m e  f o r  impurity sca t t e r ing  over the (non-degenerate) 

Averaging 

d is t r ibu t ion  function y i e lds  the well known increasing temperature 

dependence: T-3/2, where T represents the  temperature of t h e  

electron dis t r ibut ion.  

Measurements of mobility a t  low f ie lds  represent a s i t ua t ion  

where electrons are i n  equilibrium with the l a t t i c e  (T = T2) and thus 
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t he  observed var ia t ion  of mobility with l a t t i c e  temperature i s  ac tua l ly  

a measure of t h e  dependence of mobility on electron temperature. I n  

other words, i f  t he  l a t t i c e  temperature were t o  remain fixed, t h e  

increase of mobility with electron temperature would be iden t i ca l  t o  

the  r e s u l t s  obtained a t  vanishingly small f i e l d s  by varying t h e  l a t t i c e  

temperature. 

It i s  evident t h a t  t h e  mobility may be regarded as a thermometer 

for electron temperature whose ca l ibra t ion  may be determined experi- 

mentally by measuring conductivity or mobility as a function of 

l a t t i c e  temperature a t  very low f i e l d  strengths. 

a ture  determined a t  higher f i e l d  s t rengths  may be used i n  t heo re t i ca l  

The electron temper- 

predictions f o r  the dependence of a t tenuat ion on e l e c t r i c  f i e l d .  

To ve r i fy  the  magnitude of hot e lectron e f f ec t s ,  and t o  obtain 

su i tab le  data f o r  predicting at tenuat ion and amplification, a series 

of conductivity measurements was car r ied  out on a high pur i ty  sample 

of InSb removed from the  ingot intended f o r  phonon transmission 

measurements (Ingot E). 

t o  0.2 v/cm using an AC bridge and by pulse techniques up t o  250 V/CM 

a t  l a t t i c e  temperatures from 4.2 t o  20°K. 

* 

The conductivity was measured a t  f i e l d s  up 

The observed zero-field 

mobility vs. temperature i s  given i n  Fig. 11, and the  effects of 

e lectron heating are presented i n  Fig. 10. 

the  dependence of e lectron temperature on applied f i e l d  were extracted 

From these measurement, 

(Fig. 15). 

t i o n  of t he  time constant f o r  energy loss. 

An in t e re s t ing  by-product of these resul ts  i s  the determina- 

14 -3 * n = l x l O  cm 
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Figure 15 - Electron temperature dependence on applied e l e c t r o n  f i e l d  
deduced from mobil i ty  vs. l a t t i c e  temperature d a t a  of 
Figure 11 and mobil i ty  vs. e l e c t r i c  f i e l d  data of Figure 10. 
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The power density supplied by t h e  f i e l d  t o  t h e  c r y s t a l  i s  given 

by the  re la t ion :  

2 P = aE 

where a i s  t h e  e l e c t r i c a l  conductivity and E t h e  e l e c t r i c  f i e l d .  If 

the  electron system i s  su f f i c i en t ly  thermalized t o  have a cha rac t e r i s t i c  

temperature, i t s  heat content may be represented i n  t h e  non-degenerate 

case by the  usual term U = 

density. 

NKT where N represents t h e  c a r r i e r  2 

The relaxat ion t i m e  for energy loss may be defined by: 

o r  

7 = 2 . K  ---- dT 

d.( aE2) e 

Using the  measured conductivit ies and derived electron tempera- 

ture ,  t he  data shown i n  Figs. 10 and 15 were processed t o  ca lcu la te  

7 

are presented i n  Fig. 16. 

f o r  th ree  l a t t i c e  temperatures 4OK, 8OK and 12OK. The results e 

The relaxat ion time i s  observed t o  be 

r e l a t ive ly  insens i t ive  t o  l a t t i c e  temperature var ia t ion,  as expected. 

A s t r ik ing  fea ture  of the  relaxat ion t i m e  i s  i t s  strong electron 

temperature dependence. A t  higher temperatures, t h i s  i s  due mainly t o  the  

onset of polar op t i ca l  sca t te r ing  as may be seen by comparison t o  a 

prediction based on t h e  work of Stratton26 using a cha rac t e r i s t i c  

temperature of 260'~- The deviation from the  data a t  higher tempera- 

t u re s  i s  believed due mainly t o  the  f a i l u r e  of an approximation used 

i n  the  calculation. A t  &OK, t he  data i s  i n  good agreement with t h e  
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results of Peskett  and Rollin'' T = 3 x sec. A t  higher 

temperatures, t he  agreement with predictions of polar op t i ca l  scatter- 

ing i s  a considerable improvement over r e s u l t s  found by Sandercock 

e 

20 

Values f o r  7e a t  temperatures of 4-12OK appear t o  be i n  reasonable 

agreement with predictions based on deformation poten t ia l  sca t te r ing  27 

yielding a deformation poten t ia l  of - 20 ev- 

so  derived appears t o  be less than the  r e s u l t s  of Haga and K i m u r a  

and somewhat l a rge r  than the  va.1ue.s of 7 ev found by Sladek and 

The deformation po ten t i a l  

28 

24 

1-7 4*5 ev found by N i l 1  

V I I .  SUMMARY AND CONCLUSIONS 

A method of preparing semiconductor samples f o r  acoustic propa- 

gation s tudies  involving t h e  electron-phonon in te rac t ion  w a s  evolved. 

This method consisted primarily of crystallographic alignment of t h e  

ingot using x-ray techniques followed by lapping and polishing t o  

produce opt ica l ly  f lat ,  p a r a l l e l  and smooth surfaces normal t o  t h e  

chosen crystallographic axis. 

rods f o r  use i n  the microwave u l t rasonic  system. Piezoelectr ic  t rans-  

ducers w e r e  attached t o  these rods; e i t h e r  a quartz rod was  epoxy bonded 

t o  the  rod with a spec ia l  joining technique or a cadmium sul f ide  f i lm 

The ingot thus prepared w a s  then cut i n t o  

w a s  vapor deposited on the  surface. 

14 The cadmium sul f ide  vapor deposit ion method of deKlerk w a s  

adapted for use with these semiconductor rods. 

use of a quartz c r y s t a l  microbalance developed t o  measure t h e  f i l m  thick-  

ness and growth rate. 

This method involved the 

The growth rate w a s  kept below 5 X/min as deter- 

mined by the  microbalance.. It w a s  found t h a t  control  of t he  

cadmium vapor pressure w a s  t he  determing f ac to r  i n  control l ing t h e  growth 
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r a t e  since the  su l fur  tended t o  diffuse readi ly  but did not deposit on 

the  warm surfaces without cadmium. 

. The cleaning procedure w a s  found t o  be very c r i t i c a l  for f i lm 

growth. 

the vacuum system final wash i n  special ly  clean Freon-cleaning agent 

w a s  necessary t o  eliminate unwanted deposits. 

cleaning had t o  be done by ind i rec t  bombardment t o  prevent cathodic 

sputtering of the substrate  surface and the microbalance c rys t a l  and 

a l so  t o  avoid contaminant buildup on the  surface. The introduction of 

a regulated leak of dry air  i n t o  the system during ion bombardment 

proved essent ia l  for  production of consistently clean surfaces. 

In  the  chemical cleaning before inser t ing  the  substrates  i n to  

The ion-bombardment 

The RIAS electron microscope w a s  used t o  evaluate the or ientat ion 

It w a s  found t h a t  the of the films by re f lec t ion  electron diffract ion.  

smoothness of the substrate  surface was c r i t i c a l  f o r  growth of an 

oriented CdS film. In% surfaces polished f o r  f l a tnes s  and parallelism 

and deemed suf f ic ien t ly  smooth f o r  acoustic re f lec t ion  were found t o  

be not sa t i s fac tory  f o r  oriented f i lm growth. 

high mirror f i n i s h  was necessary. 

Further polishing t o  a 

Up t o  the  writ ing of t h i s  report the  cadmium sul f ide  fi lms 

produced on z-cut quartz rods (which are non-piezoelectric along t h e  

z-axis) were about 10 db l e s s  e f f i c i en t  i n  round t r i p  transducer 

eff ic iency than were x-cut quartz transducer rods. 

not observed from InSb rods upon which CdS films w e r e  deposited even 

a f t e r  t he  improved surface polishing. One of these InSb rods did yield 

acoustic echoes 17 db above the  noise when an x-cut quartz transducer 

w a s  bonded t o  it. The 10 db loss  of eff ic iency for t he  CdS films as 

Acoustic echoes were 
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compared t o  x-cut quartz plus a 55% worsening of the  cavity 8, during 

inser t ion  of In% could account f o r  t h i s  lack of echoes. 

The pr incipal  theories  of electron-phonon interact ion applicable 

t o  these experiments were examined and compared. Some small discrepancies 

were found between some of the expressions from di f fe ren t  theor ies  but 

generally they agreed very well with each other. 

difference between the theory f o r  degenerate s t a t i s t i c s  and f o r  non- 

degenerate s t a t i s t i c s  l ay  i n  the equivalence of the  mean electron 

energy terms; 

degenerate cases. 

It w a s  shown t h a t  t he  

mv * fo r  the  degenerate case and $ KT f o r  the  non- 2 F  

The e f f ec t s  of e lectron heating on the  mobility of electrons i n  

InSb were measured and used t o  calculate  the e f f ec t  of t h i s  heating on 

the acoustic grain predicted by these theories.  

The same data were used w i t h  a relaxation time model f o r  energy 

l o s s  from the  electrons t o  the l a t t i c e  t o  obtain values of re laxat ion 

time as a function of e lectron temperature. 

indicate a predominance of energy loss  by polar op t ica l  sca t te r ing  at 

electron temperatures above - 14 K while deformation poten t ia l  sca t te r ing  

seemed t o  dominate at lower temperatures. The s t r ik ing  feature  of these 

r e su l t s  was tha t  the values f o r  re laxat ion time, T ~ ,  were independent of 

l a t t i c e  temperature even when the  electron temperature exceeded the  

l a t t i c e  temperature considerably (e .g .  T = &OK and Te = 17 K gives the 

same re su l t  as T 

These values w e r e  seen t o  

0 

0 

L 
0 0 

= 12 K and Te = 17 K) .  L 
Analysis of previous data on temperature var ia t ion  of acoustic 

attenuation i n  In% yielded a value of 12 db/cm f o r  the absolute value 
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0 of at tenuat ion due t o  electron-phonon in te rac t ion  at 4.2 K and a value 

of 8 = 3.3  x f o r  t h e  acoustoelectr ic  coupling coef f ic ien t  f o r  

9 . 3  GHz acoustic waves i n  the  (111) direct ion.  This la t t ice  measure- 

ment i s  i n  good agreement with a magnetoacoustic determination of 

2 by  id? 
Repeated attempts at propogating acoustic waves through InSb rods 

demonstrated t h e  need f o r  t h e  improved transducer bonding method adopted 

during the  later portions of t h i s  work. With t h i s  method, usable 

acoustic re f lec t ions  were obtained for the  first t i m e  i n  an InSb rod 

which w a s  long enough t o  a t t ach  e l e c t r i c a l  contacts.  E lec t r i ca l  pulses 

were applied t o  these contacts during t h e  t r a n s i t  of t he  acoustic wave 

through the  InSb crys ta l .  A marked increase i n  pulse amplitude w a s  noted 

when such a pulse w a s  applied i n  some preliminary tests with t h i s  

crystal .  However, t he  analysis,  in te rpre ta t ion  and fur ther  inves t i -  

gation of these r e s u l t s  a re  now beyond the scope of t h i s  report .  
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